Complementary MOSFET pair HUASHUO HSW4602 with advanced trench technology and switching performance

Key Attributes
Model Number: HSW4602
Product Custom Attributes
Drain To Source Voltage:
30V
Current - Continuous Drain(Id):
4.5A;3.5A
Operating Temperature -:
-55℃~+150℃
RDS(on):
24mΩ@10V;56mΩ@10V
Gate Threshold Voltage (Vgs(th)):
1.5V;1.4V
Type:
N-Channel + P-Channel
Reverse Transfer Capacitance (Crss@Vds):
73pF;53pF
Number:
1 N-Channel + 1 P-Channel
Output Capacitance(Coss):
96pF;66pF
Input Capacitance(Ciss):
402pF;490pF
Pd - Power Dissipation:
1.25W
Gate Charge(Qg):
8.4nC@10V;9.8nC@10V
Mfr. Part #:
HSW4602
Package:
SOT-23-6
Product Description

Product Overview

The HSW4602 is a high-performance complementary N-channel and P-channel MOSFET pair featuring high cell density for excellent RDS(ON) and gate charge characteristics. Designed for synchronous buck converter applications, these MOSFETs offer fast switching capabilities. The HSW4602 series meets RoHS and Green Product requirements and is 100% EAS guaranteed with full functional reliability approval. Key advantages include 100% EAS Guaranteed, Green Device availability, super low gate charge, excellent CdV/dt effect decline, and advanced high cell density Trench technology.

Product Attributes

  • Brand: HS-Semi
  • Certifications: RoHS, Green Product, 100% EAS Guaranteed
  • Technology: Advanced high cell density Trench technology

Technical Specifications

Part Number Channel Type VDS (V) RDS(ON) Max (m) ID Max (A) Package Packaging
HSW4602 N-Ch 30 30 (VGS=10V, ID=4.5A) 4.5 SOT23-6 3000/Tape&Reel
HSW4602 P-Ch -30 70 (VGS=-10V, ID=-3.5A) -3.5 SOT23-6 3000/Tape&Reel

N-Channel Electrical Characteristics (TJ=25 , unless otherwise noted)

Symbol Parameter Conditions Min. Typ. Max. Unit
BVDSS Drain-Source Breakdown Voltage VGS=0V , ID=250uA 30 --- --- V
RDS(ON) Static Drain-Source On-Resistance VGS=10V , ID=4.5A --- 24 30 m
VGS(th) Gate Threshold Voltage VGS=VDS , ID =250uA 1.0 1.5 3.0 V
IDSS Drain-Source Leakage Current VDS=24V , VGS=0V , TJ=25 --- --- 1 uA
IGSS Gate-Source Leakage Current VGS=20V , VDS=0V --- --- 100 nA
Qg Total Gate Charge (4.5V) VDS=10V , VGS=10V , ID=1A --- 8.4 --- nC
Ciss Input Capacitance VDS=10V , VGS=0V , f=1MHz --- 402 --- pF
Coss Output Capacitance VDS=10V , VGS=0V , f=1MHz --- 96 --- pF
Crss Reverse Transfer Capacitance VDS=10V , VGS=0V , f=1MHz --- 73 --- pF

P-Channel Electrical Characteristics (TJ=25 , unless otherwise noted)

Symbol Parameter Conditions Min. Typ. Max. Unit
BVDSS Drain-Source Breakdown Voltage VGS=0V , ID=-250uA -30 --- --- V
RDS(ON) Static Drain-Source On-Resistance VGS=-10V , ID=-3.5A --- 56 70 m
VGS(th) Gate Threshold Voltage VGS=VDS , ID =-250uA -1.0 -1.4 -3.0 V
IDSS Drain-Source Leakage Current VDS=-24V , VGS=0V , TJ=25 --- --- 1 uA
IGSS Gate-Source Leakage Current VGS=20V , VDS=0V --- --- 100 nA
Qg Total Gate Charge (-4.5V) VDS=-15V , VGS=-10V , ID=-1A --- 9.8 --- nC
Ciss Input Capacitance VDS=-15V , VGS=0V , f=1MHz --- 490 --- pF
Coss Output Capacitance VDS=-15V , VGS=0V , f=1MHz --- 66 --- pF
Crss Reverse Transfer Capacitance VDS=-15V , VGS=0V , f=1MHz --- 53 --- pF

Typical Characteristics

Refer to the following figures for typical characteristic curves:

  • Fig.1 Typical Output Characteristics (N-Channel & P-Channel)
  • Fig.2 On-Resistance v.s Gate-Source (N-Channel & P-Channel)
  • Fig.3 Forward Characteristics Of Reverse (N-Channel & P-Channel)
  • Fig.4 Gate-Charge Characteristics (N-Channel & P-Channel)
  • Fig.5 Normalized VGS(th) v.s TJ (N-Channel & P-Channel)
  • Fig.6 Normalized RDSON v.s TJ (N-Channel & P-Channel)
  • Fig.7 Capacitance (N-Channel & P-Channel)
  • Fig.8 Safe Operating Area (N-Channel & P-Channel)
  • Fig.9 Normalized Maximum Transient Thermal Impedance (N-Channel & P-Channel)
  • Fig.10 Switching Time Waveform (N-Channel & P-Channel)
  • Fig.11 Unclamped Inductive Waveform (N-Channel & P-Channel)

Notes

  • Data tested by surface mounted on a 1 inch FR-4 board with 2OZ copper.
  • Data tested by pulsed, pulse width 300s, duty cycle 2%.
  • Power dissipation is limited by 150 junction temperature.
  • The data for PD is theoretically the same as ID and IDM, but in real applications, should be limited by total power dissipation.

2410121517_HUASHUO-HSW4602_C700963.pdf

Contact Our Experts And Get A Free Consultation!

Our mission is to offer "High Quality" & "Good Service" & "Fast Delivery" to help our clients to gain more profits.